1. States of Matter. The Atom and the Periodic Table
1.1. Matter. States of Matter
|
Print
Text
Chemistry: The study of matter and how it changes
What is matter?
- Anything that has a mass.
- [Anything you can touch, see or see in an instrument (e.g. a telescope or a microscope).]
Examples
- Iron
- Wood
- Air
- Water
- Plastic
How does matter change? Examples:
- Ice melts
- Iron corrodes
- Children grow
- Plants grow
- Petrol burns
- … and much, much more
Phase transitions
Melting & solidification (freezing)
- Solid water, H2O(s), with energy added gives liquid water, H2O(l).
- H2O(s) + energy → H2O(l)
Water freezes:
- Liquid water, H2O(l) freezes and forms solid water (ice), H2O(s). At the same time, energy is released.
- H2O(l) → H2O(s) + energy
Evaporation & condensation
Liquid water evaporates:
- Liquid water, H2O(l), with energy added gives water vapor, H2O(g)
- H2O(l) + energy → H2O(g)
Water vapor condenses:
- Water vaper condenses into liquid water. At the same time, energy is released.
- H2O(g) → H2O(l) + energy
Sublimation & deposition
Matter passes from solid to gas without passing liquid state.
Example: Solid iodine, I2(s), sublimates with added energy forms iodine vapor.
- I2(s) + energy → I2(g)
![]() |
![]() |
Ionization & deionization
Our sun and most stars are made of plasma.If enough energy is added, one or more electrons are removed from the atom. This creates positively charged ions.
Most abundant state of matter in the universe: The sun and all the stars are made of plasma.
You may also be interested in:
Learn more:
Contents
- 1. States of Matter. The Atom and the Periodic Table
- 1.1. Matter. States of Matter
- 1.2. Elements and Chemical Compounds. Pure Substances and Mixtures
- 1.3. The Birth of Chemistry
- 1.4. Atomic Theory. The Atomic Model
- 1.5. Atomic Number, Mass Number, and Atomic Mass
- 1.6. Electron Configurations
- 1.7. Beyond Bohr's Atomic Model
- 1.8. Redox Reactions
- 1.9. The Structure of the Periodic Table
- 1.10. The Noble Gases
- 1.11. The Alkali Metals and the Halogens
- 1.12. The Alkaline Earth Metals and the Oxygen Group
- 1.13. A Few of the Elements in Group 13, 14, and 15
- 2. Chemical Calculations
- 2.1. Physical Quantity, Magnitude, and Units
- 2.2. Atomic Mass, Molecular Mass, and Unit Mass
- 2.3. Amount of Substance, Molar Mass, and Mass
- 2.4. Stoichiometry. Conservation of mass
- 2.5. Water of Crystallization
- 2.6. Calculating the Formula of a Chemical Compound
- 2.7. From Empirical to Molecular Formulas
- 2.8. Equivalent Amounts of Substance and Masses
- 2.9. Gases and Pressure
- 2.10. Concentrations
- 2.11. Dilutions
- 2.12. Yield
- 2.13. Limiting Reactants
- 3. Chemical Bonding
- 3.1. How Ionic Compounds are Formed
- 3.2. Precipitations
- 3.3. Names and Formulas of Ionic Compounds
- 3.4. Ionic Bonds
- 3.5. Properties of Ionic Compounds
- 3.6. Metal Bonding
- 3.7. Covalent Bonds
- 3.8. Polar Covalent Bonding
- 3.9. Dipoles. Polar and non-polar Molecules
- 3.10. The VSEPR Theory
- 3.11. Hydrogen Bonding. The Peculiar Water
- 3.12. Equals Solves Equal
- 3.13. Solubility of Gases in Water
- 3.14. Solubility of Salts in Water
- 4. Thermochemistry
- 5. Chemical Equilibrium
- 5.1. Reaction Rates
- 5.2. The Law of Mass Action
- 5.3. Calculations on Chemical Equilibrium
- 5.4. Heterogenous Equilibria. Solubility Product
- 5.5. Is the System at Equilibrium? The Reaction Quotient Q
- 5.6. Changing the Concentrations in a System in Equilibrium.
- 5.7. Diluting or Compressing Systems in Equilibrium, or Changing the Temperature
- 6. Acids and bases
- 7. Oxidation and Reduction
- 8. Electrochemistry
- 9. Organic Chemistry
- 9.1. Alkanes
- 9.2. Chain Isomers. Nomenclature
- 9.3. Haloalkanes
- 9.4. Nucleophilic Substitution
- 9.5. Alkenes
- 9.6. Electrophilic Addition. Markovnikov’s Rule
- 9.7. Elimination
- 9.8. Alkynes
- 9.9. Arenes and Aromatic Compounds
- 9.10. Alcohols
- 9.11. Oxidation of Alcohols
- 9.12. Aldehydes and Ketones
- 9.13. Thiols and Disulfides
- 9.14. Ethers
- 9.15. Amines
- 9.16. Nitro Compounds and Organic Nitrates
- 9.17. Carboxylic Acids
- 9.18. More on Carboxylic Acids
- 9.19. Stereoisomerism
- 9.20. Esters
- 9.21. Lipids
- 9.22. Mono-, Oligo-, and Polysaccharides
- 9.23. Amino Acids
- 9.24. Nucleotides
- 10. Biochemistry
- 10.1. Proteins
- 10.2. Enzymes
- 10.3. Catabolic Processes
- 10.4. Carrier Molecules
- 10.5. Glycolysis
- 10.6. Beta-oxidation
- 10.7. The Citric Acid Cycle
- 10.8. The Metabolism of Amino Acids
- 10.9. The Electron Transport Chain
- 10.10. Anabolic Processes
- 10.11. Gluconeogenesis and Fatty Acid Synthesis
- 10.12. DNA: Structure and Function
- 11. Analytical chemistry